Navigating AI Safety & Compliance: A guide for CTOs

navigating-ai-safety-&-compliance:-a-guide-for-ctos

Posted by Fergus Hurley – Co-Founder & GM, Checks, and Pedro Rodriguez – Head of Engineering, Checks

The rapid advances in generative artificial intelligence (GenAI) have brought about transformative opportunities across many industries. However, these advances have raised concerns about risks, such as privacy, misuse, bias, and unfairness. Responsible development and deployment is, therefore, a must.

AI applications are becoming more sophisticated, and developers are integrating them into critical systems. Therefore, the onus is on technology leaders, particularly CTOs and Heads of Engineering and AI – those responsible for leading the adoption of AI across their products and stacks – to ensure they use AI safely, ethically, and in compliance with relevant policies, regulations, and laws.

While comprehensive AI safety regulations are nascent, CTOs cannot wait for regulatory mandates before they act. Instead, they must adopt a forward-thinking approach to AI governance, incorporating safety and compliance considerations into the entire product development cycle.

This article is the first in a series to explore these challenges. To start, this article presents four key proposals for integrating AI safety and compliance practices into the product development lifecycle:

1.     Establish a robust AI governance framework

Formulate a comprehensive AI governance framework that clearly defines the organization’s principles, policies, and procedures for developing, deploying, and operating AI systems. This framework should establish clear roles, responsibilities, accountability mechanisms, and risk assessment protocols.

Examples of emerging frameworks include the US National Institute of Standards and Technologies’ AI Risk Management Framework, the OSTP Blueprint for an AI Bill of Rights, the EU AI Act, as well as Google’s Secure AI Framework (SAIF).

As your organization adopts an AI governance framework, it is crucial to consider the implications of relying on third-party foundation models. These considerations include the data from your app that the foundation model uses and your obligations based on the foundation model provider’s terms of service.

2.     Embed AI safety principles into the design phase

Incorporate AI safety principles, such as Google’s responsible AI principles, into the design process from the outset.

AI safety principles involve identifying and mitigating potential risks and challenges early in the development cycle. For example, mitigate bias in training or model inferences and ensure explainability of models behavior. Use techniques such as adversarial training – red teaming testing of LLMs using prompts that look for unsafe outputs – to help ensure that AI models operate in a fair, unbiased, and robust manner.

3.     Implement continuous monitoring and auditing

Track the performance and behavior of AI systems in real time with continuous monitoring and auditing. The goal is to identify and address potential safety issues or anomalies before they escalate into larger problems.

Look for key metrics like model accuracy, fairness, and explainability, and establish a baseline for your app and its monitoring. Beyond traditional metrics, look for unexpected changes in user behavior and AI model drift using a tool such as Vertex AI Model Monitoring. Do this using data logging, anomaly detection, and human-in-the-loop mechanisms to ensure ongoing oversight.

4.     Foster a culture of transparency and explainability

Drive AI decision-making through a culture of transparency and explainability. Encourage this culture by defining clear documentation guidelines, metrics, and roles so that all the team members developing AI systems participate in the design, training, deployment, and operations.

Also, provide clear and accessible explanations to cross-functional stakeholders about how AI systems operate, their limitations, and the available rationale behind their decisions. This information fosters trust among users, regulators, and stakeholders.

Final word

As AI’s role in core and critical systems grows, proper governance is essential for its success and that of the systems and organizations using AI. The four proposals in this article should be a good start in that direction.

However, this is a broad and complex domain, which is what this series of articles is about. So, look out for deeper dives into the tools, techniques, and processes you need to safely integrate AI into your development and the apps you create.

Total
0
Shares
Leave a Reply

Your email address will not be published. Required fields are marked *

Previous Post
create-smart-chips-for-link-previewing-in-google-docs

Create smart chips for link previewing in Google Docs

Next Post
what-you-learning-about-this-weekend?-

What you learning about this weekend? 🧠

Related Posts

「設計ミス」の社会を再編する:AIと共創する未来の働き方とシステム思考

こんにちは、Soraです。この記事をお読みいただき、ありがとうございます。突然ですが、少しだけ想像してみてください。朝、もう少しだけ布団の温もりを感じていたいのに、「仕事だから」と自分にムチを打って起き上がる。満員電車に身体を押し込まれ、会社に着けば成果を求められ、同僚のフォローに追われる。気づけば形式だけの会議が続き、帰宅する頃には自分のための時間はほとんど残っていない…。もし、こうした日々に少しでも心当たりがあるなら、ふと胸の奥で「このままで、本当にいいのだろうか?」という静かな声が聞こえることがあるのではないでしょうか。本稿では、その胸のざわめきを「個人の怠け」や「甘え」として片付けるのではなく、私たちを取り巻く社会そのものの「設計ミス」のシグナルとして捉え直すことを提案します。そして、その設計をどうすれば再編できるのか、具体的なデータも交えながら、皆さんと一緒に考えていきたいと思います。### 第一章|「労働=価値」という虚構の検証私たちはいつの間にか、「働くことが人間の価値を決める」という前提を内面化しています。しかし、この考え方は本当に自明なのでしょうか。いくつかのデータは、この前提が現代において大きな歪みを生んでいる可能性を示唆しています。 **異常に低い仕事への熱意:米ギャラップ社の調査によると、日本の「熱意あふれる社員」の割合はわずか5%。これは調査した139カ国中、最下位レベルです。多くの人が、仕事に対してポジティブな感情を持てずにいる現状が伺えます。* 構造的な高ストレス状態:厚生労働省の調査では、仕事で強いストレスを感じている労働者の割合は、常に半数を超えています。これは個人の精神的な強さの問題ではなく、労働環境そのものに構造的な問題が潜んでいることの現れです。* 先進国で低位の労働生産性:日本の時間当たり労働生産性は、OECD加盟38カ国中30位(2022年)と、長年低い水準にあります。長時間働き、高いストレスを感じているにもかかわらず、それが必ずしも高い成果に結びついていないのです。これらの事実は、「個人の努力が足りない」からではなく、「努力の方向性を規定する社会の設計そのもの」に無理が生じていることを示しているのではないでしょうか。### 第二章|人生を“準備期間”にしてしまうプログラム私たちの多くは、無意識のうちに次のような人生のレールに乗せられています。 **学生時代:より良い大学に入るための「準備」* 大学時代:より良い会社に入るための「準備」* 社会人時代:昇進や老後のための「準備」* 老後:人生の終わりを迎えるための「準備」人生が常に何かの「準備」の連続で、「今、この瞬間を生きる」ことが後回しにされてしまう。この構造を支えているのが、「安定こそが正義」「みんなと同じが安心」といった、思考停止を促す“プログラム”です。このプログラムは、私たちの感性を少しずつ麻痺させ、構造への疑問を抱かせないように作用します。**### 第三章|思考のOSを更新する「言語の再設計」社会のプログラムから抜け出し、自分自身の思考を取り戻す第一歩は、言葉を意識的に変えることです。固定観念を強化する言葉を、私は「毒語」と呼んでいます。この毒語を、本質を捉えた「対抗語彙」に置き換えることで、世界の見え方は大きく変わります。| 毒語(思考停止を招く言葉) | 対抗語彙(本質を捉える言葉) | 置き換えの狙い || :—…
Read More