SQL Complete guide for Interview

sql-complete-guide-for-interview

Structured Query Language or SQL is a standard database language that is used to create, maintain, destroy, update, and retrieve data from relational databases like MySQL, Oracle, SQL Server, PostgreSQL, etc.

Entity Relationship Model (ER)

It is a conceptual framework used to describe the structure of data within a database. It was designed to represent real-world entities and the relationships between them in a more abstract way. It is similar to how Object Oriented programming is for programming language.

Entities: These are objects or “things” in the real world that have a distinct existence, such as a customer, product, or order.

Relationships: These define how entities are related to one another. For example, a “Customer” entity might have a relationship with an “Order” entity

Commands:

Create Database

create database <database_name>;

List Database

show databases;

Use Database

use <database_name>

Display structure of table

DESCRIBE table_name;

Sub-languages of SQL

Data Query Language (DQL):

Language used for performing queries on the data. This command is used to retrieve data out from the database.

Commands:

1) Select:

select * from table_name;
select column1,column2 from table_name;
select * from table_name where column1 = "value";

Data Definition Language (DDL):

Language used to define the database schema. This command is used to create,modify and delete database but not data.

Commands

1) Create:

create table table_name(
column_name data_type(size) constraint,
column_name data_type(size) constraint
column_name data_type(size) constraint
);

2) Drop:
This command removes the table/database completely.

drop table table_name;
drop database database_name;

3) Truncate:
This command removes the data only.

truncate table table_name;

4) Alter:
This command can add, delete or update columns of the table.

Add

alter table table_name
add column_name datatype;

Modify

alter table table_name
modify column column_name datatype;
--ALTER TABLE employees
--MODIFY COLUMN salary DECIMAL(10,2);

Drop

alter table table_name
drop column_name datatype;

Data Manipulation Language (DML):

Language used to manipulate the data present in the database.

1) Insert:
This command is used to insert only new values.

insert into table_name
values (val1,val2,val3,val4); //4 columns

2) Update:

update table_name set col1=val1, col2=val2 where 
col3 = val3;

3) Delete:

delete from table_name where col1=val1;

Data Control Language (DCL):

GRANT: allow specified users to perform specified tasks.
REVOKE: cancel previously granted or denied permissions.

Transaction Control Language (TCL):

It is used manage transactions in a database. It manages the changes done by DML commands.

1) Commit
It is used to save all the changes made during the current transaction to the database

BEGIN TRANSACTION;

UPDATE employees
SET salary = salary * 1.1
WHERE department = 'Sales';

COMMIT;

2) Rollback
It is used to undo all the changes made during the current transaction

BEGIN TRANSACTION;

UPDATE employees
SET salary = salary * 1.1
WHERE department = 'Sales';

ROLLBACK;

3) Savepoint

begin transaction;

update customers
set first_name= 'one'
WHERE customer_id=4;

SAVEPOINT one;

update customers
set first_name= 'two'
WHERE customer_id=4;

ROLLBACK TO SAVEPOINT one;

COMMIT;

Having:

This command is used to filter results based on aggregate functions.” We cannot use aggregate functions in WHERE statement so we can use in this command”
Note: This can be used when we need to compare using made up column whereas WHERE command can be used to compare using existing column

select Department, sum(Salary) as Salary
from employee
group by department
having sum(Salary) >= 50000;

In

This command is used when they ask to exclude any two/more particular items

select * from table_name
where colname not in ('Germany', 'France', 'UK');

Distinct:

This command is used to retrieve only unique data based on the field chosen.

Select distinct field from table;
SELECT COUNT(DISTINCT salesman_id)
FROM orders; 

Correlated Query

It is a subquery (a query nested inside another query) that references columns from the outer query

SELECT EmployeeName, Salary
FROM Employees e1
WHERE Salary > (
    SELECT AVG(Salary)
    FROM Employees e2
    WHERE e1.DepartmentID = e2.DepartmentID
);

Normalization

Normalization is a database design technique used to organize tables in a way that reduces redundancy and improves data integrity. The primary goal of normalization is to divide a large table into smaller, more manageable pieces while preserving the relationships between the data

First Normal Form (1NF)
All the values in the columns are atomic (indivisible).
Each column contains only one type of data.

EmployeeID | EmployeeName | Department | PhoneNumbers
----------------------------------------------------
1          | Alice        | HR         | 123456, 789012
2          | Bob          | IT         | 345678

After 1NF:

EmployeeID | EmployeeName | Department | PhoneNumber
----------------------------------------------------
1          | Alice        | HR         | 123456
1          | Alice        | HR         | 789012
2          | Bob          | IT         | 345678

Second Normal Form (2NF)
It is in 1NF.
All non-key attributes are fully functionally dependent on the primary key (no partial dependencies).

EmployeeID | EmployeeName | DepartmentID | DepartmentName
---------------------------------------------------------
1          | Alice        | 1            | HR
2          | Bob          | 2            | IT

After 2NF:

EmployeeID | EmployeeName | DepartmentID
---------------------------------------
1          | Alice        | 1
2          | Bob          | 2

DepartmentID | DepartmentName
------------------------------
1            | HR
2            | IT

Third Normal Form (3NF)
It is in 2NF.
All the attributes are functionally dependent only on the primary key (no transitive dependencies).

EmployeeID | EmployeeN | DepartmentID | Department | DepartmentLocation
--------------------------------------------------------------------------
1          | Alice     | 1            | HR      | New York
2          | Bob       | 2            | IT      | Los Angeles

After 3NF:

EmployeeID | EmployeeN | DepartmentID
----------------------------------------
1          | Alice        | 1
2          | Bob          | 2

DepartmentID | DepartmentName | DepartmentLocation
-----------------------------------------------
1            | HR             | New York
2            | IT             | Los Angeles

Union:

This command is used to combine results of two or more SELECT statements

Select *
from table_name
WHERE (subject = 'Physics' AND year = 1970)
UNION
(SELECT * FROM nobel_win WHERE (subject = 'Economics' AND year = 1971));

Limit:

This command is used to limit the amount data retrieved from the query.

select Department, sum(Salary) as Salary
from employee
limit 2;

Offset:

This command is used to skip the number of rows before returning the result.

select Department, sum(Salary) as Salary
from employee
limit 2 offset 2;

Order By:

This command is used to sort the data based on the field in ascending or descending order.

Data:

create table employees (
    id int primary key,
    first_name varchar(50),
    last_name varchar(50),
    salary decimal(10, 2),
    department varchar(50)
);

insert into employees (first_name, last_name, salary, department)
values
    ('John', 'Doe', 50000.00, 'Sales'),
    ('Jane', 'Smith', 60000.00, 'Marketing'),
    ('Jim', 'Brown', 60000.00, 'Sales'),
    ('Alice', 'Johnson', 70000.00, 'Marketing');

select * from employees order by department;
select * from employees order by salary desc

Null

This command is used to test for empty values

select * from tablename
where colname IS NULL;

Group By

This command is used to arrange similar data into groups using a function.

select department, avg(salary) AS avg_salary
from employees
group by department;

Like:

This command is used to search a particular pattern in a column.

Image description

SELECT *
FROM employees
WHERE first_name LIKE 'a%';
SELECT *
FROM salesman
WHERE name BETWEEN 'A' AND 'L';

Wildcard:

Characters used with the LIKE operator to perform pattern matching in string searches.

% – Percent
_ – Underscore

How to print Wildcard characters?

SELECT 'It's a beautiful day'; 
SELECT * FROM table_name WHERE column_name LIKE '%50!%%' ESCAPE '!'; 

Case

The CASE statement in SQL is used to add conditional logic to queries. It allows you to return different values based on different conditions.

SELECT first_name, last_name, salary,
    CASE salary
        WHEN 50000 THEN 'Low'
        WHEN 60000 THEN 'Medium'
        WHEN 70000 THEN 'High'
        ELSE 'Unknown'
    END AS salary_category
FROM employees;

Display Text

1) Print something

Select "message";
select ' For', ord_date, ',there are', COUNT(ord_no)
group by colname;

2) Print numbers in each column

Select 1,2,3;

3) Print some calculation

Select 6x2-1;

4) Print wildcard characters

select colname1,'%',colname2
from tablename;

5) Connect two colnames

select first_name || ' ' || last_name AS colname
from employees

6) Use the nth field

select *
from orders
group by colname
order by 2 desc;

Constraints

1) Not Null:
This constraint is used to tell the field that it cannot have null value in a column.

create table employees(
    id int(6) not null
);

2) Unique:
This constraint is used to tell the field that it cannot have duplicate value. It can accept NULL values and multiple unique constraints are allowed per table.

create table employees (
    id int primary key,
    first_name varchar(50) unique
);

3) Primary Key:
This constraint is used to tell the field that uniquely identifies in the table. It cannot accept NULL values and it can have only one primary key per table.

create table employees (
    id int primary key
);

4) Foreign Key:
This constraint is used to refer the unique row of another table.

create table employees (
    id int primary key
    foreign key (id) references owner(id)
);

5) Check:
This constraint is used to check a particular condition for data to be stored.

create table employees (
    id int primary key,
    age int check (age >= 18)
);

6) Default:
This constraint is used to provide default value for a field.

create table employees (
    id int primary key,
    age int default 28
);

Aggregate functions

1)Count:

select count(*) as members from employees;

2)Sum:

select sum(salary) as total_amount
FROM employees;

3)Average:

select avg(salary) as average_amount
FROM employees;

4)Maximum:

select max(salary) as highest_amount
FROM employees;

5)Minimum:

select min(salary) as lowest_amount
FROM employees;

6)Round:

select round(123.4567, -2) as rounded_value;

Date Functions

1) datediff

select a.id from weather a join weather b on datediff(a.recordDate,b.recordDate)=1 where a.temperature > b.temperature;

2) date_add

select date_add("2017-06-15", interval 10 day);

SECOND
MINUTE
HOUR
DAY
WEEK
MONTH
QUARTER
YEAR    

3) date_sub

SELECT DATE_SUB("2017-06-15", INTERVAL 10 DAY);

Joins

Inner Join

This is used to combine two tables based on one common column.
It returns only the rows where there is a match between both tables.

Image description

Image description

Data

create table employees(
employee_id int(2) primary key,
first_name varchar(30),
last_name varchar(30),
department_id int(2)
);

create table department(
department_id int(2) primary key,
department_name varchar(30)
);

insert into employees values (1,"John","Dow",10);
insert into employees values (2,"Jane","Smith",20);
insert into employees values (3,"Jim","Brown",10);
insert into employees values (4,"Alice","Johnson",30);

insert into department values (10,"Sales");
insert into department values (20,"Marketing");
insert into department values (30,"IT");
select e.employee_id,e.first_name,e.last_name,d.department_name
from employees e
inner join department d
on e.department_id=d.department_id;

Image description

Left Join

This type of join returns all rows from the left table along with the matching rows from the right table. Note: If there are no matching rows in the right side, it return null.

Image description

Image description

select e.employee_id, e.first_name, e.last_name, d.department_name
from employees e
left join departments d
on e.department_id = d.department_id;

Image description

Right Join

This type of join returns all rows from the right table along with the matching rows from the left table. Note: If there are no matching rows in the left side, it returns null.

Image description

Image description

SELECT e.employee_id, e.first_name, e.last_name, d.department_name
FROM employees e
RIGHT JOIN departments d
ON e.department_id = d.department_id;

Image description

Self Join

This type of join is used to combine with itself especially for creation of new column of same data.

Image description

SELECT e.employee_id AS employee_id, 
       e.first_name AS employee_first_name, 
       e.last_name AS employee_last_name, 
       m.first_name AS manager_first_name, 
       m.last_name AS manager_last_name
FROM employees e
LEFT JOIN employees m ON e.manager_id = m.employee_id;

Full Join/ Full outer join

This type of join is used to combine the result of both left and right join.

Image description

Image description

SELECT e.employee_id, e.first_name, e.last_name, d.department_name
FROM employees e
FULL JOIN departments d
ON e.department_id = d.department_id;

Image description

Cross Join

This type of join is used to generate a Cartesian product of two tables.

Image description

SELECT e.name, d.department_name
FROM Employees e
CROSS JOIN Departments d;

Image description

Nested Query

A nested query, also known as a subquery, is a query within another SQL query. The nested query is executed first, and its result is used by the outer query.
Subqueries can be used in various parts of a SQL statement, including the SELECT clause, FROM clause, WHERE clause, and HAVING clause.

1) Nested Query in SELECT Clause:

SELECT e.first_name, e.last_name, 
       (SELECT d.department_name 
        FROM departments d 
        WHERE d.id = e.department_id) AS department_name
FROM employees e;

2) Nested Query in WHERE Clause:

SELECT first_name, last_name, salary
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);
SELECT pro_name, pro_price
FROM item_mast
WHERE pro_price = (SELECT MIN(pro_price) FROM item_mast); 

3) Nested Query in FROM Clause:

SELECT department_id, AVG(salary) AS avg_salary
FROM employees
GROUP BY department_id;

4) Nested Query with EXISTS:

SELECT customer_name
FROM customers c
WHERE EXISTS (
    SELECT 1
    FROM orders o
    WHERE o.customer_id = c.customer_id
);

Exists

This command is used to test the existence of a particular record. Note: When using EXISTS query, actual data returned by subquery does not matter.

SELECT customer_name
FROM customers c
WHERE EXISTS (
    SELECT 1
    FROM orders o
    WHERE o.customer_id = c.customer_id
);
SELECT customer_name
FROM customers c
WHERE NOT EXISTS (
    SELECT 1
    FROM orders o
    WHERE o.customer_id = c.customer_id
);

COALESCE

The COALESCE function in SQL is used to return the first non-null expression among its arguments. It is particularly useful for handling NULL values and providing default values when dealing with potentially missing or undefined data.

CREATE TABLE employees (
    first_name VARCHAR(50),
    middle_name VARCHAR(50),
    last_name VARCHAR(50)
);

INSERT INTO employees (first_name, middle_name, last_name) VALUES
('John', NULL, 'Doe'),
('Jane', 'Marie', 'Smith'),
('Emily', NULL, 'Johnson');

SELECT 
    first_name,
    COALESCE(middle_name, 'No Middle Name') AS middle_name,
    last_name
FROM 
    employees;

PL/SQL(Procedural Language/Structured Query Language)

It is Oracle’s procedural extension to SQL. If multiple SELECT statements are issued, the network traffic increases significantly very fast. For example, four SELECT statements cause eight network trips. If these statements are part of the PL/SQL block, they are sent to the server as a single unit.

Blocks

They are the fundamental units of execution and organization.

1) Named block
Named blocks are used when creating subroutines. These subroutines are procedures, functions, and packages. The subroutines can be stored in the database and referenced by their names later on.

Ex.

CREATE OR REPLACE PROCEDURE procedure_name (param1 IN datatype, param2 OUT datatype) AS
BEGIN
   -- Executable statements
END procedure_name;

2) Anonymous
They are blocks do not have names. As a result, they cannot be stored in the database and referenced later.

DECLARE
   -- Declarations (optional)
BEGIN
   -- Executable statements
EXCEPTION
   -- Exception handling (optional)
END;

Declaration
It contains identifiers such as variables, constants, cursors etc
Ex.

declare
v_first_name varchar2(35) ;
v_last_name varchar2(35) ;
v_counter number := 0 ;
v_lname students.lname%TYPE; // takes field datatype from column

Rowtype

DECLARE
v_student students%rowtype;

BEGIN

select * into v_student
from students
where sid='123456';
DBMS_OUTPUT.PUT_LINE(v_student.lname);
DBMS_OUTPUT.PUT_LINE(v_student.major);
DBMS_OUTPUT.PUT_LINE(v_student.gpa);

END;

Execution
It contains executable statements that allow you to manipulate the variables.

declare
v_regno number;
v_variable number:=0;
begin
select regno into v_regno from student where regno=1;
dbms_output.put_line(v_regno || ' '|| v_variable);
end

Input of text

DECLARE
v_inv_value number(8,2);
v_price number(8,2);
v_quantity number(8,0) := 400;

BEGIN
v_price := :p_price;
v_inv_value := v_price * v_quantity;
dbms_output.put_line(v_inv_value);
END;

If-else loop

      IF rating > 7 THEN 
         v_message := 'You are great'; 
      ELSIF rating >= 5 THEN 
         v_message := 'Not bad'; 
      ELSE 
          v_message := 'Pretty bad'; 
      END IF;  

Loops

Simple Loop

declare
begin
    for i in 1..5 loop
        dbms_output.put_line('Value of i: ' || i);
    end loop;
end;

While Loop

declare
    counter number := 1;
begin
    while counter <= 5 LOOP
        dbms_output.put_line('Value of counter: ' || counter);
        counter := counter + 1;
    end loop;
end;

Loop with Exit

declare
    counter number := 1;
begin
    loop
        exit when counter > 5; 
        dbms_output.put_line('Value of counter: ' || counter);
        counter := counter + 1; 
    end loop;
end;

Procedure

A series of statements accepting and/or returning
zero variables.

--creating a procedure
create or replace procedure proc (var in number) as
begin
dbms_output.put_line(var);
end

--calling of procedure
begin
proc(3);
end

Function

A series of statements accepting zero or more variables that returns one value.

create or replace function func(var in number)
return number
is res number;
begin 
select regno into res from student where regno=var;
return res;
end

--function calling
declare
var number;
begin
var :=func(1);
dbms_output.put_line(var);
end

All types of I/O

p_name IN VARCHAR2
p_lname OUT VARCHAR2
p_salary IN OUT NUMBER

Triggers

DML (Data Manipulation Language) triggers are fired in response to INSERT, UPDATE, or DELETE operations on a table or view.

BEFORE Triggers:
Execute before the DML operation is performed.
AFTER Triggers:
Execute after the DML operation is performed.
INSTEAD OF Triggers:
Execute in place of the DML operation, typically used for views.

Note: :new represents the cid of the new row in the orders table that was just inserted.

create or replace trigger t_name
after update on student
for each row
begin
dbms_output.put_line(:NEW.regno);
end

--after updation
update student
set name='name'
where regno=1;

Window function

SELECT
    id,name,gender,
    ROW_NUMBER() OVER(
         PARTITION BY name
         order by gender
    ) AS row_number
FROM student;

SELECT
    employee_id,
    department_id,
    salary,
    RANK() OVER(
        PARTITION BY department_id
        ORDER BY salary DESC
    ) AS salary_rank
FROM employees;

ACID Properties:

Atomicity:
All operations within a transaction are treated as a single unit.
Ex. Consider a bank transfer where money is being transferred from one account to another. Atomicity ensures that if the debit from one account succeeds, the credit to the other account will also succeed. If either operation fails, the entire transaction is rolled back to maintain consistency.

Consistency:
Consistency ensures that the database remains in a consistent state before and after the transaction.
Ex. If a transfer transaction reduces the balance of one account, it should also increase the balance of the receiving account. This maintains the overall balance of the system.

Isolation:
Isolation ensures that the concurrent execution of transactions results in a system state that would be obtained if transactions were executed serially, i.e., one after the other.
Ex. Consider two transactions T1 and T2. If T1 transfers money from account A to account B, and T2 checks the balance of account A, isolation ensures that T2 will either see the balance of account A before the transfer (if T1 has not committed yet) or after the transfer (if T1 has committed), but not an intermediate state.

Durability:
Durability guarantees that once a transaction is committed, its effects are permanent and survive system failures. Even if the system crashes or restarts, the changes made by the transaction are not lost.

Data Types

1) Numeric Datatype
int
decimal(p,q) – p is size, q is precision

2) String Datatype
char(value) – max(8000) && immutable
varchar(value) – max(8000)
text – largest size

3) Date Datatype
date
time
datetime

Total
0
Shares
Leave a Reply

Your email address will not be published. Required fields are marked *

Previous Post
ask-teresa:-for-customer-interviews,-who-counts-as-a-customer?

Ask Teresa: For Customer Interviews, Who Counts as a Customer?

Next Post
dynamic-island-liquid-animation-with-react-native-skia

Dynamic Island Liquid Animation with React Native Skia

Related Posts