RandAugment in PyTorch (4)

randaugment-in-pytorch-(4)

Buy Me a Coffee

*Memos:

RandAugment() can randomly augment an image as shown below. *It’s about num_magnitude_bins and fill argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

nmb10_data = OxfordIIITPet( # `nmb` is num_magnitude_bins.
    root="data",
    transform=RandAugment(num_magnitude_bins=10)
)

nmb25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=25)
)

nmb50_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=50)
)

nmb100_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=100)
)

nmb500_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=500)
)

nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=1000)
)

no1000nmb10_data = OxfordIIITPet( # `no` is num_ops.
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=10)
)

no1000nmb25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=25)
)

no1000nmb50_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=50)
)

no1000nmb100_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=100)
)

no1000nmb500_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=500)
)

no1000nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=1000)
)

m9nmb10_data = OxfordIIITPet( # `m` is magnitude.
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=10)
)

m9nmb25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=25)
)

m9nmb50_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=50)
)

m9nmb100_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=100)
)

m9nmb500_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=500)
)

m9nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=1000)
)

no1000m9nmb10_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=10)
)

no1000m9nmb25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=25)
)

no1000m9nmb50_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=50)
)

no1000m9nmb100_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=100)
)

no1000m9nmb500_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=500)
)

no1000m9nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=1000)
)

nmb10fgray_data = OxfordIIITPet( # `f` is fill.
    root="data",
    transform=RandAugment(num_magnitude_bins=10, fill=150)
    # transform=RandAugment(num_magnitude_bins=10, fill=[150])
)

nmb10fpurple_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=10, fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=nmb10_data, main_title="nmb10_data")
show_images1(data=nmb25_data, main_title="nmb25_data")
show_images1(data=nmb50_data, main_title="nmb50_data")
show_images1(data=nmb100_data, main_title="nmb100_data")
show_images1(data=nmb500_data, main_title="nmb500_data")
show_images1(data=nmb1000_data, main_title="nmb1000_data")
print()
show_images1(data=no1000nmb10_data, main_title="no1000nmb10_data")
show_images1(data=no1000nmb25_data, main_title="no1000nmb25_data")
show_images1(data=no1000nmb50_data, main_title="no1000nmb50_data")
show_images1(data=no1000nmb100_data, main_title="no1000nmb100_data")
show_images1(data=no1000nmb500_data, main_title="no1000nmb500_data")
show_images1(data=no1000nmb1000_data, main_title="no1000nmb1000_data")
print()
show_images1(data=m9nmb10_data, main_title="m9nmb10_data")
show_images1(data=m9nmb25_data, main_title="m9nmb25_data")
show_images1(data=m9nmb50_data, main_title="m9nmb50_data")
show_images1(data=m9nmb100_data, main_title="m9nmb100_data")
show_images1(data=m9nmb500_data, main_title="m9nmb500_data")
show_images1(data=m9nmb1000_data, main_title="m9nmb1000_data")
print()
show_images1(data=no1000m9nmb10_data, main_title="no1000m9nmb10_data")
show_images1(data=no1000m9nmb25_data, main_title="no1000m9nmb25_data")
show_images1(data=no1000m9nmb50_data, main_title="no1000m9nmb50_data")
show_images1(data=no1000m9nmb100_data, main_title="no1000m9nmb100_data")
show_images1(data=no1000m9nmb500_data, main_title="no1000m9nmb500_data")
show_images1(data=no1000m9nmb1000_data, main_title="no1000m9nmb1000_data")
print()
show_images1(data=nmb10fgray_data, main_title="nmb10fgray_data")
show_images1(data=nmb10fpurple_data, main_title="nmb10fpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, no=2, m=9, nmb=31,
                 ip=InterpolationMode.NEAREST, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            ra = RandAugment(num_ops=no, magnitude=m,
                             num_magnitude_bins=nmb,
                             interpolation=ip, fill=f)
            plt.imshow(X=ra(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="nmb10_data", nmb=10)
show_images2(data=origin_data, main_title="nmb25_data", nmb=25)
show_images2(data=origin_data, main_title="nmb50_data", nmb=50)
show_images2(data=origin_data, main_title="nmb100_data", nmb=100)
show_images2(data=origin_data, main_title="nmb500_data", nmb=500)
show_images2(data=origin_data, main_title="nmb1000_data", nmb=1000)
print()
show_images2(data=origin_data, main_title="no1000nmb10_data", no=1000,
             nmb=10)
show_images2(data=origin_data, main_title="no1000nmb25_data", no=1000,
             nmb=25)
show_images2(data=origin_data, main_title="no1000nmb50_data", no=1000,
             nmb=50)
show_images2(data=origin_data, main_title="no1000nmb100_data", no=1000,
             nmb=100)
show_images2(data=origin_data, main_title="no1000nmb500_data", no=1000, 
             nmb=500)
show_images2(data=origin_data, main_title="no1000nmb1000_data", no=1000, 
             nmb=1000)
print()
show_images2(data=origin_data, main_title="m9nmb10_data", m=9, nmb=10)
show_images2(data=origin_data, main_title="m9nmb25_data", m=9, nmb=25)
show_images2(data=origin_data, main_title="m9nmb50_data", m=9, nmb=50)
show_images2(data=origin_data, main_title="m9nmb100_data", m=9, nmb=100)
show_images2(data=origin_data, main_title="m9nmb500_data", m=9, nmb=500)
show_images2(data=origin_data, main_title="m9nmb1000_data", m=9, nmb=1000)
print()
show_images2(data=origin_data, main_title="no1000m9nmb10_data", no=1000, m=9,
             nmb=10)
show_images2(data=origin_data, main_title="no1000m9nmb25_data", no=1000, m=9,
             nmb=25)
show_images2(data=origin_data, main_title="no1000m9nmb50_data", no=1000, m=9,
             nmb=50)
show_images2(data=origin_data, main_title="no1000m9nmb100_data", no=1000, m=9,
             nmb=100)
show_images2(data=origin_data, main_title="no1000m9nmb500_data", no=1000, m=9,
             nmb=500)
show_images2(data=origin_data, main_title="no1000m9nmb1000_data", no=1000, m=9,
             nmb=1000)
print()
show_images2(data=origin_data, main_title="nmb10fgray_data", nmb=10, f=150)
show_images2(data=origin_data, main_title="nmb10fpurple_data", nmb=10,
             f=[160, 32, 240])

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Total
0
Shares
Leave a Reply

Your email address will not be published. Required fields are marked *

Previous Post
what-to-say-to-an-ai-chatbot?-starters-and-prompts-for-fun

What to Say to an AI Chatbot? Starters and Prompts for Fun

Next Post
overcoming-challenges-in-selenium-scraping-with-proxies

Overcoming Challenges in Selenium Scraping with Proxies

Related Posts