RandomResizedCrop in PyTorch (3)

randomresizedcrop-in-pytorch-(3)

Buy Me a Coffee

*Memos:

RandomResizedCrop() can crop a random part of an image, then resize it to a given size as shown below:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomResizedCrop
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s1000r1_1origin_data = OxfordIIITPet( # `s` is size and `r` is ratio.
    root="data",
    transform=RandomResizedCrop(size=1000)
)

s1000r01_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.1, 10])
)

s1000r01_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.1, 1])
)

s1000r1_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[1, 10])
)

s1000r09_09_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.9, 0.9])
)

s1000r08_08_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.8, 0.8])
)

s1000r07_07_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.7, 0.7])
)

s1000r06_06_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.6, 0.6])
)

s1000r05_05_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.5, 0.5])
)

s1000r04_04_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.4, 0.4])
)

s1000r03_03_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.3, 0.3])
)

s1000r02_02_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.2, 0.2])
)

s1000r01_01_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.1, 0.1])
)

s1000r001_001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.01, 0.01])
)

s1000r0001_0001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.001, 0.001])
)

s1000r00001_00001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.0001, 0.0001])
)

s1000r2_2_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[2, 2])
)

s1000r3_3_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[3, 3])
)

s1000r4_4_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[4, 4])
)

s1000r5_5_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[5, 5])
)

s1000r6_6_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[6, 6])
)

s1000r7_7_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[7, 7])
)

s1000r8_8_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[8, 8])
)

s1000r9_9_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[9, 9])
)

s1000r10_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[10, 10])
)

s1000r100_100_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[100, 100])
)

s1000r1000_1000_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[1000, 1000])
)

s1000r10000_10000_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[10000, 10000])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r01_10_data, main_title="s1000r01_10_data")
show_images1(data=s1000r01_1_data, main_title="s1000r01_1_data")
show_images1(data=s1000r1_10_data, main_title="s1000r1_10_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r09_09_data , main_title="s1000r09_09_data ")
show_images1(data=s1000r08_08_data, main_title="s1000r08_08_data")
show_images1(data=s1000r07_07_data, main_title="s1000r07_07_data")
show_images1(data=s1000r06_06_data, main_title="s1000r06_06_data")
show_images1(data=s1000r05_05_data, main_title="s1000r05_05_data")
show_images1(data=s1000r04_04_data, main_title="s1000r04_04_data")
show_images1(data=s1000r03_03_data, main_title="s1000r03_03_data")
show_images1(data=s1000r02_02_data, main_title="s1000r02_02_data")
show_images1(data=s1000r01_01_data, main_title="s1000r01_01_data")
show_images1(data=s1000r001_001_data, main_title="s1000r001_001_data")
show_images1(data=s1000r0001_0001_data, main_title="s1000r0001_0001_data")
show_images1(data=s1000r00001_00001_data, main_title="s1000r00001_00001_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r2_2_data, main_title="s1000r2_2_data")
show_images1(data=s1000r3_3_data, main_title="s1000r3_3_data")
show_images1(data=s1000r4_4_data, main_title="s1000r4_4_data")
show_images1(data=s1000r5_5_data, main_title="s1000r5_5_data")
show_images1(data=s1000r6_6_data, main_title="s1000r6_6_data")
show_images1(data=s1000r7_7_data, main_title="s1000r7_7_data")
show_images1(data=s1000r8_8_data, main_title="s1000r8_8_data")
show_images1(data=s1000r9_9_data, main_title="s1000r9_9_data")
show_images1(data=s1000r10_10_data, main_title="s1000r10_10_data")
show_images1(data=s1000r100_100_data, main_title="s1000r100_100_data")
show_images1(data=s1000r1000_1000_data, main_title="s1000r1000_1000_data")
show_images1(data=s1000r10000_10000_data, main_title="s1000r10000_10000_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, s=None, sc=(0.08, 1.0),
                 r=(0.75, 1.3333333333333333),
                 ip=InterpolationMode.BILINEAR, a=True):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        if s:
            rrc = RandomResizedCrop(size=s, scale=sc, # Here
                                    ratio=r, interpolation=ip,
                                    antialias=a)
            plt.imshow(X=rrc(im)) # Here
        else:
            plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,  
             r=[1, 1])
show_images2(data=origin_data, main_title="s1000r01_10_data", s=1000,
             r=[0.1, 10])
show_images2(data=origin_data, main_title="s1000r01_1_data", s=1000,
             r=[0.1, 1])
show_images2(data=origin_data, main_title="s1000r1_10_data", s=1000, r=[1, 10])
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,
             r=[1, 1])
show_images2(data=origin_data, main_title="s1000r09_09_data", s=1000,
             r=[0.9, 0.9])
show_images2(data=origin_data, main_title="s1000r08_08_data", s=1000,
             r=[0.8, 0.8])
show_images2(data=origin_data, main_title="s1000r07_07_data", s=1000,
             r=[0.7, 0.7])
show_images2(data=origin_data, main_title="s1000r06_06_data", s=1000,
             r=[0.6, 0.6])
show_images2(data=origin_data, main_title="s1000r05_05_data", s=1000,
             r=[0.5, 0.5])
show_images2(data=origin_data, main_title="s1000r04_04_data", s=1000,
             r=[0.4, 0.4])
show_images2(data=origin_data, main_title="s1000r03_03_data", s=1000,
             r=[0.3, 0.3])
show_images2(data=origin_data, main_title="s1000r02_02_data", s=1000,
             r=[0.2, 0.2])
show_images2(data=origin_data, main_title="s1000r01_01_data", s=1000,
             r=[0.1, 0.1])
show_images2(data=origin_data, main_title="s1000r001_001_data", s=1000,
             r=[0.01, 0.01])
show_images2(data=origin_data, main_title="s1000r0001_0001_data", s=1000,
             r=[0.001, 0.001])
show_images2(data=origin_data, main_title="s1000r00001_00001_data", s=1000,
             r=[0.0001, 0.0001])
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,
             r=[1, 1])
show_images2(data=origin_data, main_title="s1000r2_2_data", s=1000, r=[2, 2])
show_images2(data=origin_data, main_title="s1000r3_3_data", s=1000, r=[3, 3])
show_images2(data=origin_data, main_title="s1000r4_4_data", s=1000, r=[4, 4])
show_images2(data=origin_data, main_title="s1000r5_5_data", s=1000, r=[5, 5])
show_images2(data=origin_data, main_title="s1000r6_6_data", s=1000, r=[6, 6])
show_images2(data=origin_data, main_title="s1000r7_7_data", s=1000, r=[7, 7])
show_images2(data=origin_data, main_title="s1000r8_8_data", s=1000, r=[8, 8])
show_images2(data=origin_data, main_title="s1000r9_9_data", s=1000, r=[9, 9])
show_images2(data=origin_data, main_title="s1000r10_10_data", s=1000,
             r=[10, 10])
show_images2(data=origin_data, main_title="s1000r100_100_data", s=1000,
             r=[100, 100])
show_images2(data=origin_data, main_title="s1000r1000_1000_data", s=1000,
             r=[1000, 1000])
show_images2(data=origin_data, main_title="s1000r10000_10000_data", s=1000,
             r=[10000, 10000])

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Total
0
Shares
Leave a Reply

Your email address will not be published. Required fields are marked *

Previous Post
how-to-validate-xml-against-dtd-locally-and-securely

How to Validate XML Against DTD Locally and Securely

Next Post
mastering-redux-saga:-advanced-concepts-and-use-cases-️

Mastering Redux-Saga: Advanced Concepts and Use Cases 🌪️

Related Posts