AvgPool1d() in PyTorch

avgpool1d()-in-pytorch

Buy Me a Coffee

*Memos:

AvgPool1d() can get the 2D or 3D tensor of the one or more values computed by 1D average pooling from the 2D or 3D tensor of one or more elements as shown below:

*Memos:

  • The 1st argument for initialization is kernel_size(Required-Type:int or tuple or list of int). *It must be 1 <= x.
  • The 2nd argument for initialization is stride(Optional-Default:None-Type:int or tuple or list of int):
    *Memos:

    • It must be 1 <= x.
    • If None, kernel_size is set.
  • The 3rd argument for initialization is padding(Optional-Default:0-Type:int or tuple or list of int). *It must be 0 <= x.
  • The 4th argument for initialization is ceil_mode(Optional-Default:False-Type:bool).
  • The 5th argument for initialization is count_include_pad(Optional-Default:True-Type:bool).
  • The 1st argument is input(Required-Type:tensor of int or float).
  • The tensor's requires_grad which is False by default is not set to True by AvgPool1d().
import torch
from torch import nn

tensor1 = torch.tensor([[8., -3., 0., 1., 5., -2.]])

tensor1.requires_grad
# False

avgpool1d = nn.AvgPool1d(kernel_size=1)
tensor2 = avgpool1d(input=tensor1)
tensor2
# tensor([[8., -3., 0., 1., 5., -2.]])

tensor2.requires_grad
# False

avgpool1d
# AvgPool1d(kernel_size=(1,), stride=(1,), padding=(0,))

avgpool1d.kernel_size
# (1,)

avgpool1d.stride
# (1,)

avgpool1d.padding
# (0,)

avgpool1d.ceil_mode
# False

avgpool1d.count_include_pad
# True

avgpool1d = nn.AvgPool1d(kernel_size=1, stride=None, padding=0, 
                         ceil_mode=False, count_include_pad=True)
avgpool1d(input=tensor1)
# tensor([[8., -3., 0., 1., 5., -2.]])

avgpool1d = nn.AvgPool1d(kernel_size=2)
avgpool1d(input=tensor1)
# tensor([[2.5000, 0.5000, 1.5000]])

avgpool1d = nn.AvgPool1d(kernel_size=3)
avgpool1d(input=tensor1)
# tensor([[1.6667, 1.3333]])

avgpool1d = nn.AvgPool1d(kernel_size=4)
avgpool1d(input=tensor1)
# tensor([[1.5000]])

avgpool1d = nn.AvgPool1d(kernel_size=5)
avgpool1d(input=tensor1)
# tensor([[2.2000]])

avgpool1d = nn.AvgPool1d(kernel_size=6)
avgpool1d(input=tensor1)
# tensor([[1.5000]])

my_tensor = torch.tensor([[8., -3., 0.],
                          [1., 5., -2.]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[8., -3., 0.],
#         [1., 5., -2.]])

avgpool1d = nn.AvgPool1d(kernel_size=2)
avgpool1d(input=my_tensor)
# tensor([[2.5000],
#         [3.0000]])

avgpool1d = nn.AvgPool1d(kernel_size=3)
avgpool1d(input=my_tensor)
# tensor([[1.6667],
#         [1.3333]])

my_tensor = torch.tensor([[8.], [-3.], [0.], [1.], [5.], [-2.]])

avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[8.], [-3.], [0.], [1.], [5.], [-2.]])

avgpool1d = nn.AvgPool1d(kernel_size=2, padding=1)
avgpool1d(input=my_tensor)
# tensor([[4.0000], [-1.5000], [0.0000], [0.5000], [2.5000], [-1.0000]])

avgpool1d = nn.AvgPool1d(kernel_size=3, padding=1)
avgpool1d(input=my_tensor)
# tensor([[2.6667], [-1.0000], [0.0000], [0.3333], [1.6667], [-0.6667]])

avgpool1d = nn.AvgPool1d(kernel_size=4, padding=2)
avgpool1d(input=my_tensor)
# tensor([[2.0000], [-0.7500], [0.0000], [0.2500], [1.2500], [-0.5000]])

avgpool1d = nn.AvgPool1d(kernel_size=5, padding=2)
avgpool1d(input=my_tensor)
# tensor([[1.6000], [-0.6000], [0.0000], [0.2000], [1.0000], [-0.4000]])
etc.

my_tensor = torch.tensor([[[8.], [-3.], [0.]],
                          [[1.], [5.], [-2.]]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[[8.], [-3.], [0.]],
#         [[1.], [5.], [-2.]]])

avgpool1d = nn.AvgPool1d(kernel_size=2, padding=1)
avgpool1d(input=my_tensor)
# tensor([[[4.0000], [-1.5000], [0.0000]],
#         [[0.5000], [2.5000], [-1.0000]]])

avgpool1d = nn.AvgPool1d(kernel_size=3, padding=1)
avgpool1d(input=my_tensor)
# tensor([[[2.6667], [-1.0000], [0.0000]],
#         [[0.3333], [1.6667], [-0.6667]]])

avgpool1d = nn.AvgPool1d(kernel_size=4, padding=2)
avgpool1d(input=my_tensor)
# tensor([[[2.0000], [-0.7500], [0.0000]],
#         [[0.2500], [1.2500], [-0.5000]]])

avgpool1d = nn.AvgPool1d(kernel_size=5, padding=2)
avgpool1d(input=my_tensor)
# tensor([[[1.6000], [-0.6000], [0.0000]],
#         [[0.2000], [1.0000], [-0.4000]]])
etc.

my_tensor = torch.tensor([[[8], [-3], [0]],
                          [[1], [5], [-2]]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[[8], [-3], [0]],
#         [[1], [5], [-2]]])
Total
0
Shares
Leave a Reply

Your email address will not be published. Required fields are marked *

Previous Post
box-model-in-css:-the-ultimate-guide-to-crafting-precise-layouts

Box Model in CSS: The Ultimate Guide to Crafting Precise Layouts

Next Post
package-manager-fight:-npm-vs-pnpm-vs-npx-vs-yarn-vs-bun

Package Manager Fight: npm vs pnpm vs npx vs yarn vs bun

Related Posts