*Memos:
- My post explains Pooling Layer.
- My post explains MaxPool1d().
- My post explains MaxPool2d().
- My post explains MaxPool3d().
- My post explains requires_grad.
AvgPool1d() can get the 2D or 3D tensor of the one or more values computed by 1D average pooling from the 2D or 3D tensor of one or more elements as shown below:
*Memos:
- The 1st argument for initialization is kernel_size(Required-Type:intortupleorlistofint). *It must be1 <= x.
- The 2nd argument for initialization is stride(Optional-Default:None-Type:intortupleorlistofint):
 *Memos:- It must be 1 <= x.
- If None,kernel_sizeis set.
 
- It must be 
- The 3rd argument for initialization is padding(Optional-Default:0-Type:intortupleorlistofint). *It must be0 <= x.
- The 4th argument for initialization is ceil_mode(Optional-Default:False-Type:bool).
- The 5th argument for initialization is count_include_pad(Optional-Default:True-Type:bool).
- The 1st argument is input(Required-Type:tensorofintorfloat).
- The tensor's requires_gradwhich isFalseby default is not set toTruebyAvgPool1d().
import torch
from torch import nn
tensor1 = torch.tensor([[8., -3., 0., 1., 5., -2.]])
tensor1.requires_grad
# False
avgpool1d = nn.AvgPool1d(kernel_size=1)
tensor2 = avgpool1d(input=tensor1)
tensor2
# tensor([[8., -3., 0., 1., 5., -2.]])
tensor2.requires_grad
# False
avgpool1d
# AvgPool1d(kernel_size=(1,), stride=(1,), padding=(0,))
avgpool1d.kernel_size
# (1,)
avgpool1d.stride
# (1,)
avgpool1d.padding
# (0,)
avgpool1d.ceil_mode
# False
avgpool1d.count_include_pad
# True
avgpool1d = nn.AvgPool1d(kernel_size=1, stride=None, padding=0, 
                         ceil_mode=False, count_include_pad=True)
avgpool1d(input=tensor1)
# tensor([[8., -3., 0., 1., 5., -2.]])
avgpool1d = nn.AvgPool1d(kernel_size=2)
avgpool1d(input=tensor1)
# tensor([[2.5000, 0.5000, 1.5000]])
avgpool1d = nn.AvgPool1d(kernel_size=3)
avgpool1d(input=tensor1)
# tensor([[1.6667, 1.3333]])
avgpool1d = nn.AvgPool1d(kernel_size=4)
avgpool1d(input=tensor1)
# tensor([[1.5000]])
avgpool1d = nn.AvgPool1d(kernel_size=5)
avgpool1d(input=tensor1)
# tensor([[2.2000]])
avgpool1d = nn.AvgPool1d(kernel_size=6)
avgpool1d(input=tensor1)
# tensor([[1.5000]])
my_tensor = torch.tensor([[8., -3., 0.],
                          [1., 5., -2.]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[8., -3., 0.],
#         [1., 5., -2.]])
avgpool1d = nn.AvgPool1d(kernel_size=2)
avgpool1d(input=my_tensor)
# tensor([[2.5000],
#         [3.0000]])
avgpool1d = nn.AvgPool1d(kernel_size=3)
avgpool1d(input=my_tensor)
# tensor([[1.6667],
#         [1.3333]])
my_tensor = torch.tensor([[8.], [-3.], [0.], [1.], [5.], [-2.]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[8.], [-3.], [0.], [1.], [5.], [-2.]])
avgpool1d = nn.AvgPool1d(kernel_size=2, padding=1)
avgpool1d(input=my_tensor)
# tensor([[4.0000], [-1.5000], [0.0000], [0.5000], [2.5000], [-1.0000]])
avgpool1d = nn.AvgPool1d(kernel_size=3, padding=1)
avgpool1d(input=my_tensor)
# tensor([[2.6667], [-1.0000], [0.0000], [0.3333], [1.6667], [-0.6667]])
avgpool1d = nn.AvgPool1d(kernel_size=4, padding=2)
avgpool1d(input=my_tensor)
# tensor([[2.0000], [-0.7500], [0.0000], [0.2500], [1.2500], [-0.5000]])
avgpool1d = nn.AvgPool1d(kernel_size=5, padding=2)
avgpool1d(input=my_tensor)
# tensor([[1.6000], [-0.6000], [0.0000], [0.2000], [1.0000], [-0.4000]])
etc.
my_tensor = torch.tensor([[[8.], [-3.], [0.]],
                          [[1.], [5.], [-2.]]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[[8.], [-3.], [0.]],
#         [[1.], [5.], [-2.]]])
avgpool1d = nn.AvgPool1d(kernel_size=2, padding=1)
avgpool1d(input=my_tensor)
# tensor([[[4.0000], [-1.5000], [0.0000]],
#         [[0.5000], [2.5000], [-1.0000]]])
avgpool1d = nn.AvgPool1d(kernel_size=3, padding=1)
avgpool1d(input=my_tensor)
# tensor([[[2.6667], [-1.0000], [0.0000]],
#         [[0.3333], [1.6667], [-0.6667]]])
avgpool1d = nn.AvgPool1d(kernel_size=4, padding=2)
avgpool1d(input=my_tensor)
# tensor([[[2.0000], [-0.7500], [0.0000]],
#         [[0.2500], [1.2500], [-0.5000]]])
avgpool1d = nn.AvgPool1d(kernel_size=5, padding=2)
avgpool1d(input=my_tensor)
# tensor([[[1.6000], [-0.6000], [0.0000]],
#         [[0.2000], [1.0000], [-0.4000]]])
etc.
my_tensor = torch.tensor([[[8], [-3], [0]],
                          [[1], [5], [-2]]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[[8], [-3], [0]],
#         [[1], [5], [-2]]])
 
												 
				 
								 
								 
						